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Abstract: Neurodegenerative dementias are highly complex disorders driven by vicious cycles
of intersecting pathophysiologies. While most can be definitively diagnosed by the presence of
disease-specific pathology in the brain at postmortem examination, clinical disease presentations
often involve substantially overlapping cognitive, behavioral, and functional impairment profiles that
hamper accurate diagnosis of the specific disease. As global demographics shift towards an aging
population in developed countries, clinicians need more sensitive and specific diagnostic tools to
appropriately diagnose, monitor, and treat neurodegenerative conditions. This review is intended as
an overview of how modern proteomic techniques (liquid chromatography mass spectrometry
(LC-MS/MS) and advanced capture-based technologies) may contribute to the discovery and
establishment of better biofluid biomarkers for neurodegenerative disease, and the limitations of these
techniques. The review highlights some of the more interesting technical innovations and common
themes in the field but is not intended to be an exhaustive systematic review of studies to date.
Finally, we discuss clear reporting principles that should be integrated into all studies going forward
to ensure data is presented in sufficient detail to allow meaningful comparisons across studies.

Keywords: neurodegeneration; Alzheimer’s disease; cerebrospinal fluid; plasma; serum; proteomics;
biomarkers; LC-MS/MS

1. Introduction

Clinical neuroscientists and practitioners have gained access to an increasing array of tools to
assist in the diagnosis of neurodegenerative disease dementias. Various neuroimaging techniques
and a number of cerebrospinal fluid (CSF) biomarkers can now complement diagnosis that was
once based solely on careful clinical and neuropsychological assessments of symptoms and only
positively confirmed at autopsy [1]. These additional biomarkers can be extremely informative,
as many neurological diseases present with similar sets of cognitive, behavioral, and/or movement
symptoms, particularly in early disease stages. While neuroimaging-based techniques, including
structural and functional Magnetic Resonance Imaging (MRI) and Positron Emission Tomography
(PET), are currently the most commonly used diagnostic measures, these require sophisticated on-site
technologies and expertise in specialized centers and they are expensive [2]. The field could benefit
from increasing availability of biomarkers in blood, CSF, or other biofluids, which are more widely
attainable through minimally invasive means, simpler to interpret, and performed on more routine
diagnostic equipment [3].

A series of National Institute on Aging and Alzheimer Association consensus conferences
suggested a number of criteria that a biomarker of neurodegenerative disease should fulfill [4].
A putative marker should be linked to the fundamental neuropathology of the disease and validated
in neuropathologically confirmed cases. Ideally, a marker would be able to detect the disease before
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the onset of symptoms, distinguish between neurodegenerative disorders, and not be affected by
treatment with symptom-relieving drugs. Practically, a marker should be non- or minimally invasive,
simple to execute, and relatively inexpensive. Based on these principles, a new research framework,
“AT(N)”, was proposed for clear delineation of Alzheimer’s disease (AD) from other disorders. In this
framework [1], an indication of amyloid pathology (A+) by amyloid PET or in CSF is necessary
for assigning a subject to an AD diagnosis. The disease can be further classified by the presence
or absence of tau fibrillation (T), measured by PET or phosphorylated-tau (pTau) in CSF, and the
extent of neurodegeneration (N) as measured by structural MRI or total tau in CSF. Despite this
improvement in defining AD in biological terms, these markers alone do not allow for clear staging
and AD prognosis. For example, the definition of a case as A+T+ may predict progression of a subject
from mild cognitive impairment (MCI) to dementia but with a highly variable timeframe. As a result
of this variability, the AT(N) framework was designed to flexibly accommodate the addition of further
biomarker groups such as vascular and synuclein markers that may aid in the overall characterization
of neurodegenerative disorders as distinct clinical entities and likely treatment groups.

Biofluids fulfill the practicality recommendations for a biomarker, being relatively easily and
economically attainable. CSF is the primary fluid of choice, being in intimate contact with the interstitial
fluid of the brain and carrying molecules secreted by neurons and glia, excreted metabolic waste,
and material from dying synapses, axons, and cells that indicate neurodegeneration [5–7]. However,
although the lumbar puncture procedure to obtain CSF is generally considered straightforward,
safe, and tolerable, it is not routinely performed in many neurology clinics due to patient and
clinician disinclination [8,9]. The procedure is also not particularly well suited to multiple short-term
repeat measures, such as those used to assess target engagement, pharmacokinetics, or acute
pharmacodynamic response of a novel drug. This had led to a widespread belief that the “holy
grail” of neurodegenerative disease research lies in a blood-based biomarker [10].

In blood-derived fluids (plasma and serum), central nervous system (CNS)-specific proteins are
diluted by proteins from all other peripheral tissue sources, leading to potentially low concentrations
that require ultrasensitive quantification [6,7]. Proteins may be regulated and modified by different
processes in the CNS versus the periphery, resulting in a lack of correlation between abundance in CSF
and blood [11,12]. Blood may also be presumed to be more labile, being in contact with many more
secretory and excretory tissues than CSF. Finally, blood, and to a lesser extent CSF, is a complex mixture
of proteins and metabolites that span a large range of abundances. In plasma, protein concentrations
range from the most abundant protein, human serum albumin at 50 mg/mL, to signaling proteins in
the low pg/mL range, such as IL-6 [13–15]. These large differences in protein abundance mean there is
currently no perfect technique for quantifying a large number of analytes that span this dynamic range.

Proteomic approaches are an excellent companion in the search for novel neurodegenerative
disease biomarkers. Recent improvements in reproducibility and sensitivity of liquid chromatography
tandem mass spectrometry (LC-MS/MS) instrumentation [16], coupled with the development of
immunoassay-based single molecule quantification and multiplexing [17–22], offer a wide range of
tools to allow for hypothesis-free target discovery through to the ability to accurately, sensitively,
and simultaneously quantify a specific small number of targets. While proteomic techniques
are available that together span most of the range of protein abundances in a complex biofluid,
from ultrasensitive (~0.05 pg/mL) through to extremely abundant (~50 mg/mL), careful experimental
selection and design is important to maximize the likelihood of accurately quantifying a target of
interest (Figure 1). In this review, we introduce a toolbox of techniques available to the biomarker
researcher, the advantages and disadvantages of the major technologies, and finally, some of the key
discoveries to date in the field of protein biomarkers for neurodegeneration.
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Figure 1. Different proteomic techniques are more suited to different concentration ranges of biofluid 
analytes. In this plot, cerebrospinal fluid (CSF) proteins are ranked according to their abundance, with 
the location of specific proteins placed according to their concentrations in enzyme-linked 
immunoassays (ELISAs), Multiple-Reaction-Monitoring (MRM), and in-house (unpublished) label-
free experiments [23–26]. It is of note that there is a large amount of disagreement between 
experiments on the exact concentrations of these analytes, and so their place on this plot should be 
considered illustrative. Of particular note is VGF, an analyte that exists as multiple processed 
peptides, which is easily detected by single-shot LC-MS/MS but detected in the low pg/mL ranges by 
ELISA. Single-shot LC-MS/MS will generally quantify 300–500 abundant proteins in CSF (turquoise), 
and protein identifications can be increased by offline fractionation of samples (orange). While ELISA-
based methods measure analytes across the widest concentration range, these techniques require a 
strong hypothesis for target selection and rely on the availability of an appropriate antibody pair for 
the analyte. At low analyte concentrations, super depletion can be combined with LC-MS/MS to reveal 
low-abundance proteins, but there are concerns over nonspecific depletion of some target analytes. 
Finally, ultrasensitive platforms can be used to measure proteins such as cytokines in CSF, which are 
present in the low pg/mL to fg/mL range. 

2. LC-MS/MS Strategies 

Most basic LC-MS/MS proteomic workflows derive from the same underlying tandem mass-
spectrometry method [27]. A protease-digested peptide mixture is injected onto a liquid 
chromatography column, then eluted from the column with a solvent gradient over a period of time. 
Peptides enter the tandem mass spectrometer, where they are ionized (“precursor ion”), separated 
by mass charge ratio, and detected. In data-dependent methods, the first “MS1” detection is generally 
used to quantify the peptides. In most workflows, a subset of precursor ions is isolated and 
fragmented (“fragment ions”) for a second round of mass spectrometry (MS2). MS2 fragments can be 
used for both confident identification of a peptide and for peptide quantification [28]. Almost every 
step of this simple workflow, including sample preparation, can be tweaked to optimize the 
parameters of the experiment, providing an extremely flexible basic platform for biomarker discovery 
across a range of analyte concentrations [29–31]. 

2.1. Data-Dependent LC-MS/MS 

Label-free methods are the simplest LC-MS/MS workflows. In these experiments, an unlabeled 
peptide sample is injected directly onto the instrument-coupled LC column and quantified by MS1 
intensity or spectral counting [32–35]. Peptides are identified by matching of the MS2 fragmentation 

Figure 1. Different proteomic techniques are more suited to different concentration ranges of biofluid
analytes. In this plot, cerebrospinal fluid (CSF) proteins are ranked according to their abundance,
with the location of specific proteins placed according to their concentrations in enzyme-linked
immunoassays (ELISAs), Multiple-Reaction-Monitoring (MRM), and in-house (unpublished) label-free
experiments [23–26]. It is of note that there is a large amount of disagreement between experiments
on the exact concentrations of these analytes, and so their place on this plot should be considered
illustrative. Of particular note is VGF, an analyte that exists as multiple processed peptides, which is
easily detected by single-shot LC-MS/MS but detected in the low pg/mL ranges by ELISA. Single-shot
LC-MS/MS will generally quantify 300–500 abundant proteins in CSF (turquoise), and protein
identifications can be increased by offline fractionation of samples (orange). While ELISA-based
methods measure analytes across the widest concentration range, these techniques require a strong
hypothesis for target selection and rely on the availability of an appropriate antibody pair for the
analyte. At low analyte concentrations, super depletion can be combined with LC-MS/MS to reveal
low-abundance proteins, but there are concerns over nonspecific depletion of some target analytes.
Finally, ultrasensitive platforms can be used to measure proteins such as cytokines in CSF, which are
present in the low pg/mL to fg/mL range.

2. LC-MS/MS Strategies

Most basic LC-MS/MS proteomic workflows derive from the same underlying tandem
mass-spectrometry method [27]. A protease-digested peptide mixture is injected onto a liquid
chromatography column, then eluted from the column with a solvent gradient over a period of time.
Peptides enter the tandem mass spectrometer, where they are ionized (“precursor ion”), separated by
mass charge ratio, and detected. In data-dependent methods, the first “MS1” detection is generally
used to quantify the peptides. In most workflows, a subset of precursor ions is isolated and fragmented
(“fragment ions”) for a second round of mass spectrometry (MS2). MS2 fragments can be used for
both confident identification of a peptide and for peptide quantification [28]. Almost every step of this
simple workflow, including sample preparation, can be tweaked to optimize the parameters of the
experiment, providing an extremely flexible basic platform for biomarker discovery across a range of
analyte concentrations [29–31].

2.1. Data-Dependent LC-MS/MS

Label-free methods are the simplest LC-MS/MS workflows. In these experiments, an unlabeled
peptide sample is injected directly onto the instrument-coupled LC column and quantified by MS1
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intensity or spectral counting [32–35]. Peptides are identified by matching of the MS2 fragmentation
products to the spectral properties of known peptides in a database. As only a single “snapshot”
MS2 measurement is taken, accurate MS2 level quantification is not possible. Each sample is
injected independently, and experimental reproducibility is highest if these injections are performed
consecutively with careful monitoring of LC performance [36,37]. For this reason, it may be difficult
to directly compare quantification from two label-free experiments carried out at different times in
different labs or with a different LC setup.

While this method enables truly hypothesis-free biomarker discovery without the need for
antibodies, there are a number of disadvantages to using label-free techniques that are of particular
importance in biofluids. The greatest disadvantage is that peptides from high-abundance proteins
such as albumin can mask or interfere with peptides from lower-abundance proteins, decreasing the
sensitivity of the experiment [38,39]. While it is possible to simplify the peptide mixture entering the
instrument by increasing the length of the elution from the LC, the number of protein identifications
in brain tissue currently tends to plateau at between 3000 and 5000 proteins [40]. In biofluids such
as blood, where albumin and the immunoglobulins make up more than 75% of total protein weight,
and a further 20 proteins account for more than 24% of the total weight, this masking is profound.
A standard long-gradient (>2.5 h) label-free experiment in blood yields identification of approximately
300 of the most abundant proteins [13], which may not be sufficiently sensitive (Figure 1).

Two main approaches have been used to increase the sensitivity of data-dependent approaches.
In the first, samples are prefractionated offline, simplifying the injection mixture and spreading
out spectra to decrease the impact of peptide masking from abundant peptides [30]. In unlabeled
experiments, this can lead to quantification difficulties, as normalizing across multiple injections is
complex. To get around this issue, individual samples can be labeled using a sample-specific isobaric
tag (TMT or iTRAQ) [41–43]. Tagging results in coelution of isobaric precursors from all multiplexed
samples that can then be assigned to individual samples at the MS2 fragment stage. Peptides are
quantified at the MS2 level, and a relative abundance is obtained for each peptide in each sample,
removing the need to normalize across injections. While the sensitivity of this technique to small fold
changes is high, large fold changes may be compressed [44–46]. This approach improves the overall
depth of the experiment to an extent determined by the number of offline fractions run [42,47] but
is not always sensitive enough to detect proteins only found in a small number of the multiplexed
samples. In their proof-of-principle paper, Russell et al. [48] leveraged this potential weakness by
combining CSF samples with microglial cell line (BV2) lysate samples to improve detection of immune
related proteins, which are low abundance and generally difficult to detect by LC-MS/MS in CSF.
Presence of strong MS1 spectra driven by the BV2 cell calibrator drives data-dependent MS2 level
acquisition, allowing for quantification of peptides that would not normally be acquired in CSF
samples alone. Forty-one proteins that had not previously been identified in CSF were found to differ
in abundance between AD and control subjects. The utility of this approach to drive acquisition of
data from low-abundance CNS-derived proteins in plasma should be tested.

The second approach to increasing the sensitivity of data-dependent experiments is to deplete
samples of the most abundant proteins to decrease interference from these proteins. The standard
approach is immunodepletion, using immobilized antibodies to remove abundant proteins from the
biofluid sample. While this technique does increase the sensitivity to a subset of lower abundance
proteins, nonspecific interactions between the immunodepletion matrix and specific protein–protein
interactions between the depletion targets and other proteins can lead to off-target depletion of
proteins [49,50]. Therefore, it is important to run pilot experiments or search publicly available data
to assess the effect that immunodepletion may have on particular proteins of interest. In plasma,
where the dominance by abundant proteins is more extreme, Keshisian et al. [51] reported using
a super depletion technique (of approximately 60 of the most abundant proteins) that was combined
with isobaric labeling and offline fractionation to confidently identify over 5000 proteins in plasma
samples, highlighting several novel candidates for detecting early myocardial infarction. While these
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approaches may prove useful in discovery experiments, it is likely that such a procedure would
introduce much variation and be too costly for routine clinical or large-scale research use.

2.2. Targeted LC-MS/MS Acquisition

If an investigator already has an analytes(s) of interest, then a targeted approach such as selected
reaction monitoring (SRM) [52,53] or parallel/multiple reaction monitoring (PRM/MRM) [54–56]
may be the preferred approach. These methods quantify at the MS2 level, allowing for better
precision and more accurate peptide quantification than data-dependent methods [57]. From a user
perspective, the main difference between SRM and PRM is the number of peptides that can be
quantified [58]. In SRM, each precursor-fragment pair (“transition”) must be independently scanned
for quantification, whereas in PRM, all fragments from the same precursor are simultaneously scanned,
allowing quantification of a greater number of targets. Work-up time is also therefore shorter for
PRM, as individual transitions do not need to be manually selected [59,60]. Scheduling (looking for
a precursor only at a specific retention time range) can increase the number of targets included in either
method but may lead to missing data in cases where there is significant LC drift. In both methods, it is
best to use data-dependent acquired libraries generated on the same LC setup and instrument that the
targeted methods will be performed on to begin the precursor and fragment selection process. Due to
the lower number of targets quantified, targeted experiments, particularly those using SRM, are often
performed using heavy labeled standards, and as a result, are currently seen as the gold standard in
LC/MS-MS quantification of proteins, lipids, and metabolites [54].

2.3. Data-Independent Acquisition

Data-independent acquisition (DIA/“Sequential Window Acquisition of All Theoretical Spectra”
(SWATH)) sits at the intersection between data-dependent acquisition (DDA) and targeted
approaches [61,62]. In a DIA method, acquisition is untargeted, with data acquired from tiled fragment
scans that together span the whole mass/charge range. Each tile is repeated every instrument cycle,
which allows for repeat measures and quantification for each MS2 fragment. Tiling of fragment
scans results in a greater sensitivity than DDA approaches, allowing for higher throughput and
shorter LC elution gradients. DIA is intermediate in accuracy between DDA and targeted methods
and requires no advance work up [63,64]. Instead, data can be manually curated postacquisition,
and removing poor quality fragments and peptides (such as those that exhibit interference from other
ions) can vastly improve the precision of DIA, bringing it close to targeted methods. The sensitivity
of DIA to lower abundance peptides was initially mostly dependent on the quality and depth of
the libraries used to deconvolute MS2 data. These libraries can be generated on the instrument by
preliminary DDA runs [65,66], but recently, there has been a proliferation in a number of tools that
allow high-depth DIA analysis without the need for a comprehensive, user-generated peptide libraries
(Spectronaut Pulsar, DIA Umpire [67], PeCan [68], EncyclopeDIA [69]). Scanning with variable size
windows and overlapping tiles can also attain smaller but significant improvements in specificity
and sensitivity [70,71]. A recent publication from Meier et al. [72] used DIA-like tiling approaches
to replace the full m/z scan at the MS1 level, reducing suppression from abundant peptides and
increasing ion injection time. Early data suggests this approach may greatly increase the depth of
single-shot label-free techniques, allowing quantification of up to 10,000 proteins in an hour-long scan,
with sensitivity down to attomolar levels. Fold change sensitivity and performance of this technique
across large, multiday experiments is still to be established.

2.4. Candidate Disease Markers from LC-MS/MS Studies

Despite significant improvements in LC-MS/MS technology and an increasing adoption of
these techniques, their utility thus far has been limited by low-powered studies, often utilizing
pooling strategies that limit the assessment of individual heterogeneity of potential markers.
The neurodegenerative disease biofluid biomarker field is currently dominated by studies of AD,
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with only a handful of studies on other conditions. In a review of LC-MS/MS studies performed in the
last five years (see references [3,73] for comprehensive reviews of work prior to this), only a handful
of potential targets were highlighted as significant between clinical groups by three or more studies
in CSF, and there was no consensus from studies of blood. In plasma, there have been a number of
hits in the complement factor cascade pathway but little agreement over which exact components
may be dysregulated [74–82]. In CSF, potential targets fell into two main functional categories:
neuropeptides (Chromogranin-A, Secretogranin-2, Secretogranin-3, Neurosecretory Protein VGF) and
proteins that interact with amyloid precursor protein (APP) or its resulting peptides (Figure 2A).
For all these proteins, there were studies that disagreed on the direction of change or that showed
no abundance differences between AD and control (Table 1). There are also currently no markers
that appear specific to a single neurodegenerative disease. The relatively low power of all of these
studies (n per group ranging from 3 to 134 with a substantial right skew; it is also worth noting that
the best powered study [83] found only one between-group difference that survived multiple testing
correction) combined with differences in approach may account for a large amount of disagreement
between studies. Targeted studies with fewer multiple tests are more likely to find significant outcomes,
and correction is not always performed appropriately. Because original data is very rarely presented
in these studies, it is difficult to re-examine data distributions, the effect of normalization, and assess
whether a peptide was borderline significant or highly variable. In the Considerations for Accurate
and Reproducible Findings section of this review, we discuss the adoption of minimum reporting
standards to ensure improved reproducibility and comparability of future studies.
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Figure 2. String [84] diagram shows functional protein relationships of proteins highlighted as
potential CSF biomarkers of Alzheimer’s disease. These proteins currently fall into two main groups:
neuropeptides and proteins that interact with amyloid precursor protein (APP, the precursor to
beta-amyloid). The type of interaction can be determined from the key in the bottom right. Where
peptides from the same protein differ in their significance, the reference is shown in more than
one group.

A final reason for the discrepancies in this data may be that many proteins in biofluids exist
not as intact peptides but as multiple processed peptides with differing functions, abundance,
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and stability [85–87]. The existence of these different proteoforms means that protein-level
abundance values may vary wildly depending on which peptides are selected or detected in an
assay. While targeted methods can be designed towards individual processed peptides to explicitly
address this question, untargeted experiments quantified at the protein level only may produce
confusing or conflicting results (Table 1). As understanding of the relationship of proteoforms to
disease susceptibility increases, it is likely that there will be an expanding need for top-down proteomic
methods, where intact peptides can be identified and quantified [88].

Table 1. Summary table showing cross-study results from the proteins illustrated in Figure 2. The arrow
shows the direction of change in the neurodegenerative disease compared to controls. PD: Parkinson’s
Disease, LBD: Lewy Body Dementia, APS: Atypical Parkinsonism, FTD: Frontotemporal Dementia.

Protein Gene
Symbol

Mild Cognitive
Impairment

Alzheimer’s
Disease

Amyotrophic
Lateral Sclerosis Other Diseases

Serum albumin ALB ↔ [89,90]
↓ [48,91,92]
↑ [48,92]
↔ [89,90]

↔ [93–95]

Amyloid Beta
Precursor Like

Protein
APLP1 ↑ [96]

↔ [89,90]

↔ [89,90,96–98]
↓ [91]
↑ [98]

↔ [94,95] ↓ PD [98]

Apolipoprotein E APOE ↓ [89]
↔ [90]

↑ [48,92,99,100]
↔ [83,90,91,97]

↓ [89]
↔ [93–95] ↔ PD [98,99]

↑ LBD [99]

Amyloid
Precursor Protein APP ↔ [90] ↔ [83,89,90,96]

↓ [97] ↔ [93–95]
↔ PD [98,99]
↑ LBD [99]
↓ APS [101]

Chromogranin A CHGA ↔ [89,90] ↓ [91,97,102]
↔ [89,90,92] ↔ [93–95]

Chitinase 3 Like 1
(YKL-40) CHI3L ↔ [89,90] ↑ [90,99,100]

↔ [83,89]
↔ [93,94]
↑ [95]

↔ PD [99]
↑ LBD [99]
↑ FTD [103]
↑ APS [101]

Cystatin-C CST3 ↔ [89,90]
↓ [102]

↑ [92,99,100]
↔ [89–91,97]

↔ [93,95]
↓ [94]

↔ PD [98,99]
↑ LBD [99]

Insulin Like
Growth Factor-2 IGF2 ↔ [89] ↑ [99,100]

↔ [89]
↓ [93]
↔ [95]

↔ PD [99]
↑ LBD [99]

Neuronal
Pentraxin 1 NPTX1 ↓ [89]

↔ [96]
↓ [89,102]
↔ [83,96] ↔ [93–95] ↔ PD [98]

↓ APS [101]

Secretogranin-2 SCG2 ↔ [96] ↓ [91,102]
↔ [83,96]

↔ [93,95]
↓ [94] ↓ APS [101]

Secretogranin-3 SCG3 ↔ [89,96]
↔ [83,89,96]
↓ [91,97]
↑ [48]

↔ [93–95] ↓ APS [101]

Transthyretin TTR ↑ [89,90] ↑ [90,92,99]
↔ [83,91,97,100] ↔ [93,94] ↔ PD [99]

↔ LBD [99]

Ubiquitin
(mono/poly) UBB ↑ [48,99,104,105]

↔ [83] ↔ [94,95,104]

↔ FTD [104]
↔ APS [105]
↑ LBD [99]

↔ PD [99,104,105]

Neurosecretory
Protein VGF VGF ↔ [89,96] ↓ [91,97,102]

↔ [83,89,96] ↔ [93–95] ↓ APS [101]

3. Capture-Based Strategies

Antibodies have long been the bedrock of protein quantification strategies, particularly in biofluid
biomarker development. Antibodies are specific and flexible protein tools that can be easily conjugated
to a number of different reporters and immobilized on a variety of matrices, allowing for their use in
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enzyme-linked immunoassays (ELISAs), Western blotting, and immunohistochemistry. Here, we focus
on recent technological developments that allow for multiplexing of targets on ELISA-like platforms
and ultrasensitive protein quantification, which may prove exceptionally useful in the detection
of very low levels of CNS specific proteins in blood-derived biofluids. The reliance on antibodies
for these techniques may result in problems, however [106]. The process of antibody production,
particularly for polyclonal antibodies, can be subjected to large batch variation in antibody specificity.
Antibody specificity can be difficult to test in human biofluids, where knockdown of a protein is
not possible. Antibodies are commonly tested for cross-reactivity with spiked-in proteins that are
structurally similar to the target, but nonspecificity can be difficult to predict and this approach is not
exhaustive. It is therefore of critical importance to keep comprehensive documentation of lot numbers
and batch numbers when performing antibody-based proteomic experiments to monitor potential
unexpected causes of variation.

3.1. Multiplexed Immunoassays

Although conventional colorimetric ELISA methods have remained the primary workhorse
for measuring biomarker levels in biofluids, the emergence of electrochemiluminescent (ECL)
immunoassay technology has allowed for the simultaneous measurement of multiple analytes across
a broad dynamic range, leading ECL immunoassays to quickly become the new standard in the
field [20,21]. ECL immunoassays are similar in workflow to traditional ELISAs. With plate-based
immunoassays, such as those developed by MesoScale Discovery (MSD), carbon electrodes are
coated with capture antibodies coated onto discrete spots in each plate well to allow multiplexing
of up to 10 targets per sample. Secondary detection antibodies are conjugated to ECL labels that
emit light when electricity is applied to the electrodes [21]. In contrast to ELISAs, which depend
on developing colorimetric substrates over time, ECL immunoassays have heightened sensitivity
with the application of multiple excitation cycles, which amplifies light intensity at lower levels
and improves the signal-to-background ratio, enabling accurate measurements in the low pg/mL
range [107]. Elimination of the chemical substrate also allows for more consistent and replicable
detection, as ECL signal intensity does not vary over time. The increased sensitivity coupled with
multiplexing capabilities allows for reduced sample volumes, lower per sample cost, and decreased
processing time [108], which are critical considerations when working with valuable and limited
biospecimens such as CSF.

Luminex Multi-Analyte Profiling (xMAP) technology uses color-coded beads bound to capture
antibodies in order to multiplex up to 500 targets in a single assay [109,110]. Analytes are quantified
by the binding of a biotinylated target-specific detector antibody to a streptavidin-coated fluorescent
dye, which then passes through two lasers. The first laser decodes the color-coded bead, while the
second quantifies the fluorescence intensity of the associated detector dye. The detection system can
be flow based or magnetic based; in the latter, beads are anchored to a specific location by a magnet for
imaging. The flow system has a higher multiplexing capability, as immunocomplexes are analyzed
individually and sequentially [111].

Both the MSD and Luminex immunoassays run into similar pitfalls as other antibody-based
techniques, namely, antibody specificity and cross-reactivity, which restrict the number of multiplexable
targets. While Luminex boasts the simultaneous measurement of up to 500 analytes, realistically,
it is limited to a panel of approximately 30 targets due to antibody cross-reactivity [112].
Although immunoassays are considered high-throughput for sample quantification, the number
of multiplexable targets available through these techniques requires the development of a strong
hypothesis in order to be used efficiently. Initial biomarker discovery may be more suited to LC-MS/MS
strategies, which can then be extended into an ECL immunoassay approach once a select set of proteins
of interest has been identified.
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3.2. Adaptations of Standard Capture Methods

The shortcomings of antibody-based detection techniques have driven the development of new
technologies to detect proteins in biofluids. In an attempt to decrease the influence of nonspecific
cross-reactivity, OLink proteomics developed the Proximity Extension Assay (PEA) [113,114].
Instead of using one capture and one labeled detection antibody, complementary DNA oligonucleotides
are conjugated to both antibodies. The probes only anneal if both antibodies are bound to the same
protein. Quantification is performed by qPCR on annealed oligonucleotides, allowing for multiplexing
of up to 92 targets with higher sensitivity than a standard ELISA.

In SOMAscan technology from Somalogic [115], antibodies are entirely replaced by short (20–60
nucleotide) fluorescently labeled DNA Slow Offrate Modified Aptamers (SOMAmers) that can
specifically bind over 1100 protein targets. After biotinylation and multiple rounds of washing,
aptamers that successfully bind protein targets are bound to a DNA array and quantified by
fluorescence intensity. DNA SOMAmers are unlikely to suffer from batch effects as severely as
antibodies given they can be easily synthesized, but design and testing of specific probes for
thousands of targets requires multiple rounds of optimization and careful quality control procedures.
The SOMAscan assay has been shown to have extremely reliable technical reproducibility, with intra-
and interplate Coefficients of Variation (CVs) in the ~5% range [19]. As with traditional immunoassays,
sources that can introduce variability and contribute to poor (>20%) CVs include dilution factors and
proximity to detection limits.

The interpretation of both the Proximity Extension Assay and SOMAscan data is heavily
dependent on post-data collection processing algorithms and normalization procedures [19,116].
There are several data treatment methods currently developed for transforming PEA and SOMAscan
data, each designed to focus on minimizing a specific source of variability. Differences in data
processing can also drastically affect intersite replicability and lead to inconsistencies between reported
findings. Standardized data-treatment procedures are necessary in order to ensure concordant
interpretation of the data and comparability between study centers.

3.3. Ultrasensitive Detection Methods

In a traditional ELISA, sensitivity to lower abundance analytes is reduced due to the dilution of
capture-target-detector complexes (immunocomplexes) in a relatively large liquid volume. The limits of
detection are therefore related to the optical sensitivity of the detection system. In novel ultrasensitive
methods such as single molecule counting (SMC, EMD Millipore) [22] and single molecule array
(Simoa, Quanterix) [17], microfluidic technologies spatially isolate immunocomplexes, allowing
for significantly more sensitive detection of low-concentration analytes through counting single
molecules. In SMC systems, detector antibodies from immunocomplexes are cleaved off to pass
through a laser that excites fluorescent tags, allowing each individual detector to be counted as it passes
through. Currently, this technology only allows for measurement of a single analyte. In Simoa, intact
immunocomplexes are washed into a bead array, where each immunocomplex occupies a single well.
This spatial localization allows for detection of a single immunocomplex on each bead, and coupling
with different fluorophores allows for multiplexing of up to six analytes. Although SMC and Simoa
technology are still antibody-based techniques and maintain similar matrix interference issues to
ELISA immunoassays, increased spatial localization allows an algorithm to model the binding of
low-abundance antigens, increasing the dynamic range of the system. Analyte concentrations as low
as femtogram/mL can now be quantified, as higher dilution factors can be employed without causing
analyte concentrations to fall below the detection limits of the assay.

3.4. Candidate Disease Markes from Capture-Based Studies

The improved sensitivity and the reduced impact of extreme abundance proteins in capture-based
studies in comparison to LC-MS/MS techniques has led to their being used to great effect in
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blood-derived biofluids. Neurofilament light chain (NfL) may prove to be a useful biomarker of
overall neurodegeneration (“N”). In both blood and CSF, NfL is elevated in the presence of neuronal
damage, although it is not disease specific [18,117]. Although 50 times more concentrated in CSF than in
blood, differences in NfL levels between controls and cognitively impaired individuals are still evident
in blood. Although NfL data across various platforms tends to be consistent, the measurements do
not always perfectly correlate, and in some cases, significant outcomes are only evident on particular
platforms [18]. Such variability between platforms is not peculiar to NfL and has been observed
for a number of analytes in multiple studies [111,118]. YKL-40 is another emerging biomarker
in Alzheimer’s disease that shows promise in linking neuroinflammation to neurodegeneration.
Concentrations of YKL-40 were significantly elevated in CSF (and more modestly increased in plasma)
in individuals across various states of dementia [119,120]. However, YKL-40, like NfL, may be reflective
of general neuroinflammation and may not necessarily be disease specific. The lack of agreement
between different immunoassay technologies can contribute to mixed findings and discrepancies
in reported absolute concentrations, complicating the overall understanding of neurodegenerative
diseases at a population level.

Many studies have also proposed panels of various combinations of plasma or serum biomarkers
associated with cognitive decline or disease severity that have the potential to profile different aspects
of neurodegeneration. Some of the most consistently investigated candidates include proinflammatory
cytokine TNF-α, microvascular injury markers ICAM-1 and VCAM-1, and clusterin, an extracellular
shuttling protein reported to be associated with Alzheimer’s disease progression [7,121–124].
Within the literature, there have been discussions regarding conflicting reports of significant
associations between proposed markers and disease staging or differential diagnoses [7,124,125],
which are attributed to differences in platforms, methods, data processing, and a lack of standardization
and reproducibility. Of particular concern is the general under-reporting of nonsignificant analytes in
studies that use large-scale multiplexes such as SOMAscan and antibody array-like methods. By only
including data of a small subset of analytes (commonly, those that are found to be the most significant)
and not making data on the full range of analytes publicly available, it is impossible to tell which of
the remaining analytes were confidently detected but not significantly altered with disease. This is an
important distinction, as it can inform whether the analyte may still be of interest as opposed to not
reliably quantifiable due to limitations of the technology used.

4. Considerations for Accurate and Reproducible Findings

If the field wishes to discover reliable, quantifiable biomarkers for neurodegenerative dementias,
then data from multiple large studies across heterogeneous populations must be comparable. In the
final section of this review, we will discuss some technical considerations important for the accuracy
of these techniques and recommendations for reporting that will improve our ability to compare
data and achieve sufficient sample sizes to draw population-level conclusions above the variability of
human samples.

4.1. Preanalytical Effects

In addition to post-data collection processing and platform-specific variability, preanalytical
factors can affect the accuracy and reproducibility of measured analytes. The effects of preanalytical
factors have already been systematically reviewed [126–128]. Here, we aim to emphasize the
importance of standardizing these factors to ensure reliable measurements across multiple centers.
Preanalytical factors are divided into two subgroups: in vivo and in vitro factors. These factors include
but are not limited to: collection methods and materials, hemolytic contamination of samples, sample
handling, storage temperature, thaw conditions, sample stability prior to processing, and kit lot-to-lot
variability [129,130]. Much has been written on the importance of collecting and storing CSF only with
polypropylene plasticware, as polystyrene or other materials can bind very sticky proteins such as
amyloid-β or prion proteins [131,132]. Freeze-thaw cycles (the number of times a stored sample is
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thawed and refrozen) are often investigated as a cause of protein degradation over repeated uses [133].
Protein integrity varies across analytes and biofluids and maximum acceptable freeze-thaw cycles
are specific to each platform, depending on detection sensitivity. Ideally, sample collection methods
and times should be strictly controlled to minimize diurnal effects, as well as accounting for possible
differences in analyte concentrations between fasting and nonfasting biofluids, which can affect levels
of hormones, triglycerides, and other metabolic-pathway-related markers. Levels of certain proteins
may vary widely day to day, and thus it is also important to examine the biotemporal stability of an
analyte before considering its use as a biomarker [23].

4.2. Matrix Effects

Biofluid composition is also an important consideration when using a multiplex immunoassay
system. Matrix effects can negatively impact the ability of highly sensitive immunoassays to accurately
quantify certain analytes [134]. As with label-free proteomics techniques, complex matrices with high
abundance of albumin and immunoglobulins can affect antibody binding and increase background,
masking low-abundance proteins. These low-abundance proteins often approach immunoassay limits
of detection, increasing the difficulty of accurate quantification. In some cases, such as with CSF,
increasing sample volume may allow for the detection of these low abundance proteins. However,
for more complex biofluids, the sample matrix has been found to inhibit detection of certain analytes
in spike-recovery experiments, and increasing sample volume would not improve quantification [135].
In a comparison between standards of known concentrations spiked in immunoassay buffer versus
serum and plasma matrices, analyte quantification was significantly lower in the presence of either
human sample matrix compared to the buffer. This inhibitory effect has been investigated by
a number of other studies researching the quantification of low-abundance proteins in complex
biofluids [136,137].

These sources of interference in immunoassay detection can lead to misinterpretation of assay
results, which can affect clinical or research outcomes. Inhibitory effects may vary between
immunoassay detection systems and contribute to inaccurate measurements, increasing the difficulty
of comparing quantification across multiple platforms. Due to possible matrix effects, it is generally
recommended that the interpretation of analyte quantification in undiluted samples be relative rather
than absolute; that is, the measurement should be interpreted in relation to other sample concentrations
measured using the same platform. Dilution of samples in immunoassay buffers often improves
quantification accuracy by mitigating such matrix effects, resulting in more absolute quantification.
When investigating a new immunoassay, it is important to take into consideration possible sources of
interference and assess dilution linearity and spike-recovery performance to determine optimal sample
conditions. Some assays may not be suited to analyte detection in all matrices, as each sample matrix
requires individual optimization. For CSF, dilution factors may be necessary for absolute quantification
but can cause analyte measurements to fall below the limit of detection.

4.3. Data Processing

The difficult challenge of how to standardize data comes from the technical aspects of the
proteomic workflow. The adoption of different quantification techniques for proteins of variable
abundance makes comparison across studies difficult. LC performance can vary substantially over
time and can introduce significant variability to an experiment [36]. Simple measures can be taken
to improve monitoring of day-to-day instrument variability and demonstrate instrument reliability,
such as spiking with retention time calibrators and monitoring of abundant peptides in automatic QC
systems like AutoQC in Panorama [138].

How to appropriately normalize data and compare across studies is a more difficult problem
with very little consensus, and the field should consider a series of questions. The first regards
whether input protein concentration should be normalized before proteomic quantification, as is
standard in LC-MS/MS workflows, or whether the same volume of each fluid should be used per
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assay (as applies to ELISA workflows). The second is whether distribution-based normalization
methods (e.g., median or quantile normalization) are appropriate in this context, given that they
are based on the assumption that most analytes will not change in abundance between conditions,
and that a roughly symmetric proportion of proteins will increase and decrease in abundance. If the
integrity of the blood brain barrier is compromised by a neurodegenerative process, this may lead to
proteome-wide increases in CSF protein concentration, invalidating the assumption that most proteins
will not change in abundance between conditions [139]. Where panels of proteins have been selected
on the basis that they are likely to vary between disease conditions, the same assumption is also
invalidated and distribution-based normalization may be rendered inappropriate. The alternative
approach, to select a subset of “housekeeping” proteins to which to normalize, is also problematic,
as a number of studies have shown significant disease-related differences in the abundant biofluid
proteins, which would be the most obvious candidates for selection. We would argue that there is
currently insufficient high-quality data available to select a panel of normalizing peptides/proteins
that may be stable across neurodegenerative conditions, and establishing whether such stable proteins
exist should be an additional priority of hypothesis-free proteomic experiments. The current gold
standard in quantification and reproducibility, therefore, may be smaller-scale targeted experiments,
where ratiometric comparisons to a heavy-labeled standard with proven linearity or a standard curve
allowing reporting of a concentration may be the most reliable means of quantification. As this
approach does not allow for hypothesis-free discovery, these approaches should be used in replication
cohorts for findings that arise from untargeted methods.

4.4. Multisite Variability

It is important to conduct replication studies to assess intersite and interuser variability using
the same platform and data-processing methods. Seemingly trivial or unapparent differences in
techniques, materials, or environmental conditions can affect results. It is not sufficient to assume
that employing the same sample-processing procedures, the same multiplex assay kits or LC setup,
and standardized data reporting will necessarily eliminate variability. In an extensive multisite study
involving six different labs, Breen et al. [118] found that each analyte measured showed at least
one significant lab or assay lot-to-lot effect despite following a consensus protocol across all sites.
Care should be taken to establish systems of determining assay reproducibility, such as including
standardized plate-to-plate controls to minimize plate effects across multiple sites and batch ordering
assays to ensure lot consistency. Even so, controlling for every source of variability and assessing
the performance of all available technologies and platforms is often unrealistic due to financial and
resource limitations.

5. Future Directions

Proteomics is a relatively new and rapidly growing field and has yet to develop clear standards for
reporting data and consistent methods to allow for confident comparison of datasets. The complexity of
and similarity between neurodegenerative diseases means that studies of large, diverse populations are
required to define biomarkers that are both sensitive and specific. It is therefore of critical importance
that the field as a whole adopts stringent and detailed reporting criteria to build knowledge on a scale
that will help delineate and stratify subjects across populations in a biologically informative manner.
While proteomic-specific journals have begun to adopt set reporting criteria, clinical journals do not
generally require this level of detail, and the field suffers as a result. At a bare minimum, a data
table that includes every peptide and/or protein confidently detected in each proteomic experiment
(including retention time and mz data for LC-MS/MS), abundance in each individual sample, and per
group summary statistics should be provided for every study. A list of significantly changed proteins
with a fold change and p/q value is not sufficient for thorough examination of the data. As a field,
a decision should be made to use a standardized protein reference, as switching between Uniprot
IDs [140], gene names, and other reference formats often leads to errors and data loss. We propose
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the use of both the Ensembl gene ID [141], which is clearly linked to genomic locus and reference
version, and a more descriptive gene ID such as the gene symbol for ease of understanding results.
Similarly, clinical and demographic data should be provided on an individual subject level to allow for
modeling of age, sex, and other important demographic variables. The development and adoption of
user-friendly resources such as the CSF Proteome Resource and Plasma Proteome Database [14,142] to
allow for cross-study comparison is also critically important. Adoption of standards along these lines
will likely lead to leaps forward in the biomarker discovery pipeline equivalent to the speed at which
the discovery technology is improving.
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119. Muszyński, P.; Groblewska, M.; Kulczyńska-Przybik, A.; Kułakowska, A.; Mroczko, B. YKL-40 as a Potential
Biomarker and a Possible Target in Therapeutic Strategies of Alzheimer’s Disease. Curr. Neuropharmacol.
2017, 15, 906–917. [CrossRef] [PubMed]

120. Craig-Schapiro, R.; Perrin, R.J.; Roe, C.M.; Xiong, C.; Carter, D.; Cairns, N.J.; Mintun, M.A.; Peskind, E.R.;
Li, G.; Galasko, D.R.; et al. YKL-40: A novel prognostic fluid biomarker for preclinical Alzheimer’s disease.
Biol. Psychiatry 2010, 68, 903–912. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.dadm.2015.12.004
http://www.ncbi.nlm.nih.gov/pubmed/27239539
http://dx.doi.org/10.1021/pr5006058
http://www.ncbi.nlm.nih.gov/pubmed/25091646
http://dx.doi.org/10.1002/prca.201700100
http://www.ncbi.nlm.nih.gov/pubmed/28972305
http://dx.doi.org/10.1038/nmeth.3995
http://www.ncbi.nlm.nih.gov/pubmed/27595404
http://dx.doi.org/10.1016/j.jim.2005.04.003
http://www.ncbi.nlm.nih.gov/pubmed/15979637
http://dx.doi.org/10.3233/JAD-2010-100456
http://www.ncbi.nlm.nih.gov/pubmed/20634583
http://dx.doi.org/10.1006/abio.1999.4128
http://www.ncbi.nlm.nih.gov/pubmed/10419629
http://dx.doi.org/10.1128/CDLI.9.1.41-45.2002
http://www.ncbi.nlm.nih.gov/pubmed/11777827
http://dx.doi.org/10.1016/j.euprot.2014.02.002
http://dx.doi.org/10.3390/ijms18122697
http://www.ncbi.nlm.nih.gov/pubmed/29236046
http://dx.doi.org/10.1371/journal.pone.0095192
http://www.ncbi.nlm.nih.gov/pubmed/24755770
http://dx.doi.org/10.1093/nar/gkr424
http://www.ncbi.nlm.nih.gov/pubmed/21646338
http://dx.doi.org/10.1002/brb3.747
http://www.ncbi.nlm.nih.gov/pubmed/28948068
http://dx.doi.org/10.1001/jamaneurol.2016.6117
http://www.ncbi.nlm.nih.gov/pubmed/28346578
http://dx.doi.org/10.1128/CVI.05032-11
http://www.ncbi.nlm.nih.gov/pubmed/21697338
http://dx.doi.org/10.2174/1570159X15666170208124324
http://www.ncbi.nlm.nih.gov/pubmed/28183245
http://dx.doi.org/10.1016/j.biopsych.2010.08.025
http://www.ncbi.nlm.nih.gov/pubmed/21035623


Proteomes 2018, 6, 32 20 of 21

121. Hye, A.; Riddoch-Contreras, J.; Baird, A.L.; Ashton, N.J.; Bazenet, C.; Leung, R.; Westman, E.; Simmons, A.;
Dobson, R.; Sattlecker, M.; et al. Plasma proteins predict conversion to dementia from prodromal disease.
Alzheimer's Dement. 2014, 10, 799–807. [CrossRef] [PubMed]

122. Ray, S.; Britschgi, M.; Herbert, C.; Takeda-Uchimura, Y.; Boxer, A.; Blennow, K.; Friedman, L.F.; Galasko, D.R.;
Jutel, M.; Karydas, A.; et al. Classification and prediction of clinical Alzheimer’s diagnosis based on plasma
signaling proteins. Nat. Med. 2007, 13, 1359–1362. [CrossRef] [PubMed]

123. Kiddle, S.J.; Thambisetty, M.; Simmons, A.; Riddoch-Contreras, J.; Hye, A.; Westman, E.; Pike, I.; Ward, M.;
Johnston, C.; Lupton, M.K.; et al. Plasma based markers of [11C] PiB-PET brain amyloid burden. PLoS ONE
2012, 7, e44260. [CrossRef] [PubMed]

124. Baird, A.L.; Westwood, S.; Lovestone, S. Blood-Based Proteomic Biomarkers of Alzheimer’s Disease
Pathology. Front. Neurol. 2015, 6, 236. [CrossRef] [PubMed]

125. Voyle, N.; Baker, D.; Burnham, S.C.; Covin, A.; Zhang, Z.; Sangurdekar, D.P.; Tan Hehir, C.A.; Bazenet, C.;
Lovestone, S.; Kiddle, S.; et al. AIBL research group, and the A. research Blood Protein Markers of Neocortical
Amyloid-β Burden: A Candidate Study Using SOMAscan Technology. J. Alzheimer’s Dis. 2015, 46, 947–961.
[CrossRef] [PubMed]

126. Del Campo, M.; Mollenhauer, B.; Bertolotto, A.; Engelborghs, S.; Hampel, H.; Simonsen, A.H.; Kapaki, E.;
Kruse, N.; Le Bastard, N.; Lehmann, S.; et al. Recommendations to standardize preanalytical confounding
factors in Alzheimer’s and Parkinson’s disease cerebrospinal fluid biomarkers: An update. Biomark. Med.
2012, 6, 419–430. [CrossRef] [PubMed]

127. Leitão, M.J.; Baldeiras, I.; Herukka, S.-K.; Pikkarainen, M.; Leinonen, V.; Simonsen, A.H.; Perret-Liaudet, A.;
Fourier, A.; Quadrio, I.; Veiga, P.M.; et al. Chasing the Effects of Pre-Analytical Confounders—A Multicenter
Study on CSF-AD Biomarkers. Front. Neurol. 2015, 6, 153. [CrossRef] [PubMed]

128. Fourier, A.; Portelius, E.; Zetterberg, H.; Blennow, K.; Quadrio, I.; Perret-Liaudet, A. Pre-analytical and
analytical factors influencing Alzheimer’s disease cerebrospinal fluid biomarker variability. Clin. Chim. Acta
2015, 449, 9–15. [CrossRef] [PubMed]

129. Livesey, J.H.; Ellis, M.J.; Evans, M.J. Pre-analytical requirements. Clin. Biochem. Rev. 2008, 29 (Suppl. 1),
S11–S15.

130. Le Bastard, N.; De Deyn, P.P.; Engelborghs, S. Importance and Impact of Preanalytical Variables on Alzheimer
Disease Biomarker Concentrations in Cerebrospinal Fluid. Clin. Chem. 2015, 61, 734–743. [CrossRef]
[PubMed]

131. Vanderstichele, H.M.J.; Janelidze, S.; Demeyer, L.; Coart, E.; Stoops, E.; Herbst, V.; Mauroo, K.; Brix, B.;
Hansson, O. Optimized Standard Operating Procedures for the Analysis of Cerebrospinal Fluid Aβ42
and the Ratios of Aβ Isoforms Using Low Protein Binding Tubes. J. Alzheimer’s Dis. 2016, 53, 1121–1132.
[CrossRef] [PubMed]

132. Vallabh, S.M.; Nobuhara, C.K.; Llorens, F.; Zerr, I.; Parchi, P.; Capellari, S.; Kuhn, E.; Klickstein, J.; Safar, J.;
Nery, F.; et al. Prion protein quantification in cerebrospinal fluid as a tool for prion disease drug development.
bioRxiv 2018, 295063. [CrossRef]

133. Comstock, G.W.; Burke, A.E.; Norkus, E.P.; Gordon, G.B.; Hoffman, S.C.; Helzlsouer, K.J. Effects of repeated
freeze-thaw cycles on concentrations of cholesterol, micronutrients, and hormones in human plasma and
serum. Clin. Chem. 2001, 47, 139–142. [CrossRef] [PubMed]

134. Jani, D.; Allinson, J.; Berisha, F.; Cowan, K.J.; Devanarayan, V.; Gleason, C.; Jeromin, A.; Keller, S.; Khan, M.U.;
Nowatzke, B.; et al. Recommendations for Use and Fit-for-Purpose Validation of Biomarker Multiplex Ligand
Binding Assays in Drug Development. AAPS J. 2016, 18, 1–14. [CrossRef] [PubMed]

135. Rosenberg-Hasson, Y.; Hansmann, L.; Liedtke, M.; Herschmann, I.; Maecker, H.T. Effects of serum and
plasma matrices on multiplex immunoassays. Immunol. Res. 2014, 58, 224–233. [CrossRef] [PubMed]

136. Tate, J.; Ward, G. Interferences in immunoassay. Clin. Biochem. Rev. 2004, 25, 105–120. [PubMed]
137. Martins, T.B.; Pasi, B.M.; Litwin, C.M.; Hill, H.R. Heterophile antibody interference in a multiplexed

fluorescent microsphere immunoassay for quantitation of cytokines in human serum. Clin. Diagn.
Lab. Immunol. 2004, 11, 325–329. [CrossRef] [PubMed]

138. Sharma, V.; Eckels, J.; Schilling, B.; Ludwig, C.; Jaffe, J.D.; MacCoss, M.J.; MacLean, B. Panorama Public:
A public repository for quantitative data sets processed in Skyline. Mol. Cell. Proteom. 2018, 17, 1239–1244.
[CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.jalz.2014.05.1749
http://www.ncbi.nlm.nih.gov/pubmed/25012867
http://dx.doi.org/10.1038/nm1653
http://www.ncbi.nlm.nih.gov/pubmed/17934472
http://dx.doi.org/10.1371/journal.pone.0044260
http://www.ncbi.nlm.nih.gov/pubmed/23028511
http://dx.doi.org/10.3389/fneur.2015.00236
http://www.ncbi.nlm.nih.gov/pubmed/26635716
http://dx.doi.org/10.3233/JAD-150020
http://www.ncbi.nlm.nih.gov/pubmed/25881911
http://dx.doi.org/10.2217/bmm.12.46
http://www.ncbi.nlm.nih.gov/pubmed/22917144
http://dx.doi.org/10.3389/fneur.2015.00153
http://www.ncbi.nlm.nih.gov/pubmed/26217300
http://dx.doi.org/10.1016/j.cca.2015.05.024
http://www.ncbi.nlm.nih.gov/pubmed/26141614
http://dx.doi.org/10.1373/clinchem.2014.236679
http://www.ncbi.nlm.nih.gov/pubmed/25869575
http://dx.doi.org/10.3233/JAD-160286
http://www.ncbi.nlm.nih.gov/pubmed/27258423
http://dx.doi.org/10.1101/295063
http://dx.doi.org/10.1093/aje/kwn327
http://www.ncbi.nlm.nih.gov/pubmed/18820276
http://dx.doi.org/10.1208/s12248-015-9820-y
http://www.ncbi.nlm.nih.gov/pubmed/26377333
http://dx.doi.org/10.1007/s12026-014-8491-6
http://www.ncbi.nlm.nih.gov/pubmed/24522699
http://www.ncbi.nlm.nih.gov/pubmed/18458713
http://dx.doi.org/10.1128/CDLI.11.2.325-329.2004
http://www.ncbi.nlm.nih.gov/pubmed/15013983
http://dx.doi.org/10.1074/mcp.RA117.000543
http://www.ncbi.nlm.nih.gov/pubmed/29487113


Proteomes 2018, 6, 32 21 of 21

139. Khoonsari, P.E.; Häggmark, A.; Lönnberg, M.; Mikus, M.; Kilander, L.; Lannfelt, L.; Bergquist, J.; Ingelsson, M.;
Nilsson, P.; Kultima, K.; et al. Analysis of the Cerebrospinal Fluid Proteome in Alzheimer’s Disease.
PLoS ONE 2016, 11, e0150672. [CrossRef] [PubMed]

140. The UniProt Consortium. UniProt: The universal protein knowledgebase. Nucleic Acids Res. 2017, 45,
D158–D169. [CrossRef] [PubMed]

141. Birney, E.; Andrews, T.D.; Bevan, P.; Caccamo, M.; Chen, Y.; Clarke, L.; Coates, G.; Cuff, J.; Curwen, V.;
Cutts, T.; et al. An overview of Ensembl. Genome Res. 2004, 14, 925–928. [CrossRef] [PubMed]

142. Guldbrandsen, A.; Farag, Y.; Kroksveen, A.C.; Oveland, E.; Lereim, R.R.; Opsahl, J.A.; Myhr, K.-M.;
Berven, F.S.; Barsnes, H. CSF-PR 2.0: An Interactive Literature Guide to Quantitative Cerebrospinal Fluid
Mass Spectrometry Data from Neurodegenerative Disorders. Mol. Cell. Proteom. 2017, 16, 300–309. [CrossRef]
[PubMed]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1371/journal.pone.0150672
http://www.ncbi.nlm.nih.gov/pubmed/26950848
http://dx.doi.org/10.1093/nar/gkw1099
http://www.ncbi.nlm.nih.gov/pubmed/27899622
http://dx.doi.org/10.1101/gr.1860604
http://www.ncbi.nlm.nih.gov/pubmed/15078858
http://dx.doi.org/10.1074/mcp.O116.064477
http://www.ncbi.nlm.nih.gov/pubmed/27890865
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	LC-MS/MS Strategies 
	Data-Dependent LC-MS/MS 
	Targeted LC-MS/MS Acquisition 
	Data-Independent Acquisition 
	Candidate Disease Markers from LC-MS/MS Studies 

	Capture-Based Strategies 
	Multiplexed Immunoassays 
	Adaptations of Standard Capture Methods 
	Ultrasensitive Detection Methods 
	Candidate Disease Markes from Capture-Based Studies 

	Considerations for Accurate and Reproducible Findings 
	Preanalytical Effects 
	Matrix Effects 
	Data Processing 
	Multisite Variability 

	Future Directions 
	References

