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Considerable overlap has been identified in the risk factors, comorbidities and putative 

pathophysiological mechanisms of Alzheimer disease and related dementias (ADRDs) and type 2 

diabetes mellitus (T2DM), two of the most pressing epidemics of our time. Much is known about 

the biology of each condition, but whether T2DM and ADRDs are parallel phenomena arising 

from coincidental roots in ageing or synergistic diseases linked by vicious pathophysiological 

cycles remains unclear. Insulin resistance is a core feature of T2DM and is emerging as a 

potentially important feature of ADRDs. Here, we review key observations and experimental data 

on insulin signalling in the brain, highlighting its actions in neurons and glia. In addition, we 

define the concept of ‘brain insulin resistance’ and review the growing, although still inconsistent, 

literature concerning cognitive impairment and neuropathological abnormalities in T2DM, obesity 

and insulin resistance. Lastly, we review evidence of intrinsic brain insulin resistance in ADRDs. 

By expanding our understanding of the overlapping mechanisms of these conditions, we hope to 

accelerate the rational development of preventive, disease-modifying and symptomatic treatments 

for cognitive dysfunction in T2DM and ADRDs alike.

Type 2 diabetes mellitus (T2DM), dementia due to Alzheimer disease (AD), and AD-related 

dementias (such as mild cognitive impairment (MCI), vascular contributions to cognitive 

impairment and dementia, Lewy body diseases, and frontotemporal dementias)1,2 are among 

the most common, costly and disabling conditions in the industrialized world. Until recently, 

AD and related dementias (ADRDs) and T2DM were thought to have little obvious 

relationship to one another, apart from an association with stroke.

However, a growing body of epidemiological and molecular evidence now suggests that a 

considerable overlap in risk, comorbidity and pathophysiological mechanisms exists across 

these conditions3–19. The phenomenon of insulin resistance is essential to our understanding 

of this overlap. Insulin resistance has long been recognized as a central feature of T2DM, but 

research from the past few years has shown that it also occurs in the brains of individuals 

with ADRDs, even in the absence of concurrent T2DM. In this Review, we describe the 

actions of insulin in the body and brain, offer a definition of brain insulin resistance as it 

might occur in T2DM and ADRDs and highlight key clinical and preclinical data that 

support the association of these two conditions, as well as incongruous data that suggest that 

they are independent. To conclude, we propose questions aiming to expand our 

understanding of extrinsic (that is, systemic) and intrinsic processes that mediate insulin 

resistance in the brain. We hope that this knowledge will lead to improved brain health — 

including improved cognitive function — in individuals with T2DM and ADRDs.

Insulin action

Human insulin is a 51-amino acid peptide hormone produced by pancreatic β-cells. Its 

synthesis and release into blood is stimulated by an increase in the level of circulating blood 

glucose20,21, although changes in the levels of other substances — including amino acids, 

acetylcholine, cholecystokinin and incretin hormones — also stimulate its release. Insulin 

acts in tissues throughout the body. Its best‑known role is to maintain plasma glucose within 

a physiological range by promoting glucose uptake (especially by skeletal muscle) and 

inhibiting glucose production and release by the liver. Insulin also functions as an anabolic 
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hormone that promotes fatty acid and amino acid uptake, energy storage and cellular growth. 

Conversely, insulin inhibits catabolic processes such as gluconeo-genesis, glycolysis, 

lipolysis and proteolysis. Diabetes mellitus is characterized by elevated blood glucose levels 

that result from insufficient insulin production or insulin activity. Type 1 diabetes mellitus is 

typically caused by autoimmune destruction of β-cells, whereas T2DM results from a failure 

of β-cells to produce enough insulin to overcome systemic insulin resistance, usually 

associated with obesity, inactivity and ageing. T2DM, the most common form of diabetes 

mellitus, will be the focus of this Review.

Insulin signalling and diverse cellular actions

Insulin elicits its cellular actions by binding receptors present on most cells. When insulin 

binds the extracellular α-subunits of insulin receptors, it induces the dimerization of the 

intracellular β-subunits, which activates intrinsic tyrosine kinases and causes receptor 

autophosphorylation. Insulin-like growth factor 1 (IGF1) also binds and activates insulin 

receptors, and both insulin and IGF receptors can initiate many of the same trophic 

actions22,23.

In the canonical insulin signalling pathways24 (FIG. 1), autophosphorylated β-subunits of 

insulin receptors recruit molecular adaptor proteins belonging to the insulin receptor 

substrate (IRS) family, as well as the SHC-transforming family of proteins. Of these IRS 

family proteins, IRS1 and IRS2 are the best characterized, most widely distributed and most 

relevant to the classic metabolic actions of insulin. Although IRS1 and IRS2 have 

overlapping signal transduction activity, IRS1 is especially important in skeletal muscle, 

adipose tissue and the cerebral cortex whereas IRS2 is important in the liver and 

hypothalamus. The tyrosine kinase activity of insulin receptors phosphorylates tyrosine 

residues on IRS1 or IRS2, which activates these keystones of insulin action and stimulates 

signalling via the AKT pathway. Recruitment of SHC proteins by insulin receptors also 

leads to activation of the RAS–RAF–MAPK (mitogen‑activated protein kinase) pathway.

The insulin–IRS–AKT pathway is of special interest in T2DM as it mediates the 

translocation of the major glucose transporter, GLUT4 (also known as SLC2A4), from 

intracellular vesicles to the plasma membrane of muscle and adipose cells25, which 

facilitates diffusion of glucose into these cells, thereby reducing blood glucose. By contrast, 

in the liver26, glucose enters and is released from hepatocytes by GLUT2, which is not 

regulated by insulin. However, insulin stimulates glycogen synthase in the liver to store 

glucose as glycogen and inhibits glycogen phosphorylase, thus inhibiting glycogenolysis and 

glucose release. These actions are the major determinants of whole-body glucose 

homeostasis.

Beyond its glucoregulatory actions in muscle, adipose and liver tissue, the insulin–IRS–AKT 

pathway mediates a host of downstream processes in all cell types. This pathway regulates 

phosphorylation of many intracellular proteins, including serine/threonine‑protein kinase 

mTOR, glycogen synthase kinase 3 (GSK3), cAMP-responsive element-binding protein 

(CREB), filamin A and nitric oxide synthases, and thus is involved in a multitude of 

processes, including DNA replication and cell cycle activity, protein synthesis, cell survival, 

metabolism, angiogenesis, potassium uptake, lipid modification and autophagy.
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The MAPK pathway is the other key signalling pathway activated by insulin. This pathway 

controls a variety of transcription factors and elements, such as CREB and proto-oncogenes 

c-Myc (MYC) and c-Fos (FOS), and helps to regulate the transcription, translation and post-

translational modifications of many important proteins, including other growth factors, 

receptor genes and matrix‑modifying proteins. Activation of the insulin–IRS–AKT and 

MAPK cascades does not necessarily occur in concert, especially under pathophysiological 

conditions, in which one pathway might be activated while the other is not27. Furthermore, 

although these signalling mechanisms potentially occur in all cell types, the effects of insulin 

vary widely across different cells and tissues.

Insulin and the brain

Insulin receptors are expressed on all cell types in the brain, although substantial variation in 

expression levels exists between regions. Within the brain, insulin receptor density is highest 

in the olfactory bulb, hypothalamus, hippocampus, cerebral cortex, striatum and 

cerebellum28–31. The widespread distribution of these receptors suggests that insulin 

signalling has important and diverse roles in the brain (FIG. 2).

Sources of insulin in the brain

Insulin levels in cerebrospinal fluid (CSF) are much lower than in plasma32,33, but these 

levels are correlated, indicating that most insulin in the brain derives from circulating 

pancreatic insulin. Insulin enters the brain primarily via selective, saturable transport across 

the capillary endothelial cells of the blood–brain barrier (BBB)34–38. Transport is affected by 

a number of factors, including obesity, inflammation, glycaemia, diabetes mellitus and levels 

of circulating triglycerides39. In humans, the CSF:serum ratio of insulin levels is reported to 

be reduced in the presence of whole‑body insulin resistance40, as well as with increasing 

age and in disease states such as AD41,42. One possible explanation is decreased transport of 

insulin across the BBB.

Some controversial work has suggested that insulin is also synthesized de novo in the brain. 

Insulin mRNA expression has been reported in selected brain regions in rats and mice, and 

production of insulin peptide has been described in primary cultured neurons from rats, but 

not in glia43–48. However, the specificities of these assays have been questioned, and other 

studies have failed to demonstrate the presence of insulin mRNA or protein in appreciable 

quantities in the brain49–52. In humans, early evidence of brain insulin synthesis included 

observation of C-peptide (a by-product of local insulin synthesis) in various cerebral 

regions53,54. Insulin mRNA transcripts have been detected in human post-mortem brain 

tissue, especially in the hippocampus and hypothalamus, but are present at reduced levels in 

post-mortem brain tissue from individuals who had AD55. Insulin mRNA was also detected 

by PCR in adult human and mouse brains56, and chromatin immunoprecipitation assays 

showed active Ins2 transcription in mice. Ins2 mRNA levels were especially high in 

hippocampus, striatum and thalamus, and intracellular insulin and C-peptide protein 

immunolabelling was also observed in multiple brain regions, including the hippocampus. 

Furthermore, the investigators described de novo insulin and C-peptide production in mouse 

primary hippocampal neurons cultured in insulin-free media.
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Confirmation of the presence of insulin synthesis in the brain will be crucial, as will be 

characterization of its localization and regulatory factors. The regional selectivity of insulin 

synthesis suggests that synthesis and release have a role in the function of local circuits, but 

this idea is speculative at present.

Effects of insulin in neurons

Insulin has many roles in neurons, and these roles are mediated by signalling through its two 

major effector pathways: the insulin–IRS–AKT and MAPK pathways57,58. Insulin receptors 

are highly enriched in synapses59, localizing to both the presynaptic axon terminal60 and the 

postsynaptic density compartments61,62, and have important effects on neurosynaptic 

functioning63–66. Briefly, insulin enhances neurite outgrowth, modulates catecholamine 

release and uptake, regulates trafficking of ligand-gated ion channels, regulates expression 

and localization of GABA, N-methyl-d-aspartate (NMDA) and α-amino-3-hydroxy-5-

methyl-4-isoxazole propionic acid (AMPA) receptors and modulates activity-dependent 

synaptic plasticity (that is, long-term potentiation (LTP) and long-term depression (LTD)) 

via NMDA receptor signalling and AKT67. Furthermore, insulin has a crucial role in the 

development and maintenance of excitatory synapses68 and has been shown to promote 

dendritic spine formation and excitatory synapse development through activation of AKT–

mTOR and Ras-related C3 botulinum toxin substrate 1 (RAC1)–cell division control protein 

42 homolog (CDC42) pathways69. In addition, AKT and GSK3 seem to be crucial for 

modulation of the balance between LTP and LTD70. Finally, by inhibiting apoptosis, insulin 

promotes neuronal survival71.

Despite glucose being the major energy source for the brain, the uptake, transport and 

utilization of glucose in neurons is only influenced by insulin and is not dependent on it72,73. 

The insulin-independent glucose transporter GLUT3 is the major glucose transporter in 

neurons and is present in very few other cell types in the body. The density and distribution 

of GLUT3 in axons, dendrites and neuronal soma correlates with local cerebral energy 

demands74. Insulin is not required for GLUT3-mediated glucose transport; instead, NMDA 

receptor-mediated depolarization stimulates consumption of glucose, which prompts glucose 

uptake and utilization via GLUT373,75.

Although most glucose uptake in neurons occurs via GLUT376, insulin-regulated GLUT4 is 

also co-expressed with GLUT3 in brain regions related to cognitive behaviours — at least in 

rodents. These regions include the basal forebrain, hippocampus, amygdala and, to lesser 

degrees, the cerebral cortex and cerebellum77. Activation by insulin induces GLUT4 

translocation to the neuron cell membrane via an AKT-dependent mechanism78,79 and is 

thought to improve glucose flux into neurons during periods of high metabolic demand, such 

as during learning80. Interestingly, GLUT4 is also expressed in the hypothalamus81, a key 

area for metabolic control. Deletion of GLUT4 from the CNS in mice results in impaired 

glucose sensing and tolerance82, which might be due in part to an absence of GLUT4 in the 

hypothalamus.
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Effects of insulin in glial cells

Astrocytes are the principal homeostatic cells of grey matter and compose 20–40% of all 

glia in the human brain83,84. Astrocytes take up glucose via GLUT1 and can process glucose 

glycolytically and transport lactate to neurons as an alternative fuel source during 

hypoglycaemia in a process known as the astrocyte–neuron lactate shuttle85,86. The relative 

contribution of this shuttle as a neuronal fuel source compared with neuronal glucose uptake 

via glucose transporters is still debated, although it is clear that neurons can use lactate to 

fuel oxidative phosphorylation and generate ATP during periods of high energy demand87. 

Hyperinsulinaemia is reported to increase peripheral lactate levels, which in turn could affect 

the net flux of lactate across the BBB and affect energy metabolism within the brain88; 

therefore, the effect of insulin levels on lactate could have implications for brain functioning. 

Astrocytes bind insulin with high affinity89 and express IRS1, IRS2 and downstream 

signalling molecules AKT and MAPK. Functional assays have demonstrated activation of 

these canonical pathways with insulin or IGF190–92. Interestingly, glial insulin receptors are 

downregulated in response to chronically high levels of insulin whereas neuronal insulin 

receptors are not93. This finding could have implications for understanding the effects of 

T2DM on brain function as well as for understanding how insulin resistance can 

differentially affect various cell types. Finally, astrocytes play a part in inflammatory 

responses in the brain, and insulin modulates astrocyte inflammatory cytokine secretion in 

response to inflammatory stimuli in a complex concentration-dependent manner91.

AKT signalling is important for mediating oligodendrocyte proliferation, survival, 

differentiation and myelination. The activation of AKT signalling by IGF1 in 

oligodendrocytes is well established94 and is known to promote differentiation and axonal 

ensheathment95. Given this cross-signalling between insulin and IGF1, insulin signalling 

might also contribute to these processes.

Research on human microglial cultures in vitro has found that microglia express insulin 

receptors and IRS1 and that insulin modulates microglial inflammatory responses in a 

complex manner91. Depending on its concentration in culture, insulin can enhance the 

secretion of certain inflammatory cytokines and inhibit the production of others. In addition, 

insulin has also demonstrated selective anti-inflammatory and antiviral actions in cultured 

human primary microglia from HIV-1-infected fetal tissue, as well as in cats infected with 

feline immunodeficiency virus96.

Net effects of insulin in the brain: systemic metabolism, cognition and mood

Insulin can provoke a wide variety of effects in cells, and the complexity of insulin’s actions 

is especially evident in the brain owing to the specialized functions of different brain 

regions, cell types and their networked connections.

Insulin signalling in the CNS regulates metabolic pathways in peripheral tissues such as the 

liver and adipose tissue, and these effects are thought to be mediated by the actions of 

insulin in the hypothalamus. In rats, IRS2 is highly expressed in hypothalamus as well as in 

some other brain areas that regulate feeding, nutrient partitioning and energy balance97. 

Since the 1970s, studies examining intracerebroventricular or direct hypothalamic 
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administration of insulin in rodents and nonhuman primates have shown that insulin 

decreases food intake in a dose‑dependent manner98–105, although the robustness of these 

effects remains controversial106. The metabolic effects of brain insulin are also important, 

including the suppression of hepatic glucose production107–109, lipolysis in adipose 

tissue110,111, hepatic catabolism of branched-chain amino acids112 and hepatic triglyceride 

secretion110, all of which occur independently from plasma insulin levels. Metabolic 

regulation occurs via modulation of vagal and/or sympathetic efferent fibres, and vagotomy 

or sympathectomy abrogates suppression of hepatic glucose production or adipose tissue 

lipolysis, respectively107,110. Together, these studies show that the association between 

T2DM and brain dysfunction might be due to impaired hypothalamic insulin action resulting 

in disrupted metabolic control and increasing susceptibility to T2DM due to whole-body 

insulin resistance113.

In the past few years, studies that utilized intranasal insulin administration have reported 

substantial effects on cognition and neurophysiology. Acute and chronic intranasal insulin 

administration improved memory and other cognitive functions in healthy adults with 

obesity or T2DM114–123, and neuroimaging studies found that intranasal insulin alters 

activation of cognitive brain regions and resting-state connectivity between the hippo campal 

region and the default-mode network124–126. Electrophysiology studies, including 

measurement of event-related potentials127, direct-current brain potentials128 and 

magnetoencephalography129,130, also detected changes in response to acute intranasal 

insulin administration in healthy individuals and in people with obesity. On the other hand, 

in a pioneering study, a well-established hyperinsulinaemic–euglycaemic clamp procedure 

in elderly individuals with normal cognition or with AD failed to elicit a change in 

performance on a memory task with insulin compared with saline131.

Acute glucose administration enhances cognitive functioning132,133, but chronic 

hyperglycaemia might negatively affect brain function134. However, it remains unclear 

whether these effects are directly due to the actions of glucose or instead to stimulation of an 

increased release of insulin or other hormones in response to increased circulating glucose 

levels. Changes in insulin levels might also affect neuronal glucose uptake and metabolism 

via GLUT4 translocation in response to insulin–IRS1–AKT signalling in brain regions 

important for cognitive and emotional function. This process could increase glucose uptake 

under conditions of high energy demand, as has been observed to occur during hippocampal-

dependent learning tasks in rats135,136.

Given the high density of insulin receptors in limbic cortical and subcortical regions, the fact 

that insulin also affects mood, reward, motivation and other aspects of psychiatric 

functioning is to be expected. Indeed, insulin was among the earliest drug treatments for 

severe psychiatric disorders137, and an extensive literature exists on the reciprocal 

relationship between diabetes mellitus and mood138. However, the neurobiological role of 

insulin and insulin signalling in reward-based, motivational and emotional functioning has 

received limited systematic investigation. In healthy young men, hyperinsulinaemic–

euglycaemic clamping decreased hunger and increased wakefulness ratings but had no acute 

effects on mood139. On the other hand, chronic (8-week) intranasal insulin improved 

multiple aspects of negative affect and memory in obese young men115.
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Brain insulin resistance

Definition

Insulin resistance in T2DM has been defined as “reduced sensitivity in body tissues to the 

action of insulin”.140 Similarly, brain insulin resistance can be defined as the failure of brain 

cells to respond to insulin141. Mechanistically, this lack of response could be due to 

downregulation of insulin receptors, an inability of insulin receptors to bind insulin or faulty 

activation of the insulin signalling cascade. At the cellular level, this dysfunction might 

manifest as the impairment of neuroplasticity, receptor regulation or neurotransmitter release 

in neurons, or the impairment of processes more directly implicated in insulin metabolism, 

such as neuronal glucose uptake in neurons expressing GLUT4, or homeostatic or 

inflammatory responses to insulin. Functionally, brain insulin resistance can manifest as an 

impaired ability to regulate metabolism — in either the brain or periphery — or impaired 

cognition and mood.

In the following sections, we consider the concept of brain insulin resistance in three 

settings: T2DM-associated cognitive effects in which systemic insulin resistance might 

engender brain insulin resistance and brain dysfunction; T2DM-associated 

neurodegenerative dementias in which systemic insulin resistance is thought to promote 

neurodegenerative disease pathology; and neurodegenerative disease dementia-associated 

brain insulin resistance irrespective of T2DM or systemic insulin resistance. As will become 

evident, we do not yet have a clear understanding of how systemic and brain insulin 

resistance, cognition and ADRDs relate to one another.

Systemic and brain insulin resistance

Multiple sources of data support a link between T2DM and brain dysfunction — particularly 

regarding cognitive impairment and ADRDs (BOX 1). Cognitive dysfunction was 

recognized in patients with diabetes mellitus as early as the 1920s, when Miles and Root 

described impairments in memory, processing speed and arithmetic abilities142. Among 

early formal studies conducted in the 1980s, Perlmuter et al.143 compared cognition in non-

insulin-dependent individuals with T2DM and age-matched nondiabetic controls and 

reported that more severe deficiencies — including memory deficiencies — were associated 

with higher haemoglobin A1c levels. Subsequent studies supported these findings and 

described modest impairments in complex attention, information processing and executive 

function in individuals with T2DM18,144–154. Most studies have been conducted in middle-

aged and elderly individuals and found that a higher degree of cognitive impairment is 

associated with a longer duration of diabetes, poorer glycaemic control and the presence of 

diabetic complications, as well as common comorbidities such as hypertension and 

depression. Whether T2DM‑associated cognitive impairment or dementia are solely related 

to cerebro-vascular, ageing or neurodegeneration-related effects remains unclear. Emerging 

data in young adults and adolescents with T2DM show cognitive and brain structural 

changes in this burgeoning population, supporting the notion that even early disease 

processes, and not only cumulative vascular and age-related neurodegeneration, play a part 

in pathogenesis155–158.
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Neuroimaging studies have revealed differences in brain structure and function in 

individuals with longstanding T2DM compared with healthy individuals159,160. Large-vessel 

atherosclerosis and stroke, as well as small-vessel ischaemic disease, are more common in 

individuals with T2DM than in the general population. Cerebral atrophy — especially in 

cognition-related regions — is also present at a greater frequency in elderly individuals who 

have insulin resistance and T2DM than in those without either of these conditions. 

Metabolic imaging with FDG-PET scanning in middle-aged and elderly individuals with 

insulin resistance (either T2DM or pre-T2DM) who have normal cognition has demonstrated 

regional cortical hypometabolism in parietal, temporal and frontal regions, which are 

important for cognition and are frequently implicated in ADRDs161–163.

Studies have yet to show whether T2DM‑associated cognitive impairment and brain 

neuroimaging findings are a consequence of brain insulin resistance or are due to other 

factors that co-occur with systemic insulin resistance. Common comorbidities of systemic 

insulin resistance in T2DM — such as hyperglycaemia, advanced glycation end products, 

oxidatively damaged proteins and lipids, inflammation, dyslipidaemia, athero sclerosis and 

microvascular disease, renal failure and hypertension — all have their own complex effects 

on brain function through a variety of mechanisms independent of insulin signalling. 

Furthermore, evidence suggests that systemic insulin resistance or high circulating levels of 

insulin affects the function of the BBB by downregulating endothelial insulin receptors and 

thus decreasing permeability of the BBB to insulin. This change in permeability is 

potentially of great importance as it could lead to decreased brain insulin levels and 

decreased insulin-facilitated neural and glial activity40. On the other hand, T2DM can lead 

to damage of the BBB, which results in increased permeability to a variety of 

substances164–166.

Experimental animal models of T2DM have supported the concept that systemic and brain 

insulin resistance are linked. For instance, genetic models of T2DM (including db/db mice), 

pharmacologically-induced T2DM models (such as streptozotocin-treated mice) and rodents 

fed a high-fat diet develop systemic insulin resistance, hyperglycaemia and strong 

biochemical evidence of brain insulin resistance, as well as memory deficits, synaptic 

abnormalities (structural, molecular and neurophysiological) and other brain 

abnormalities167–170. Few experimental studies in humans have directly examined whether 

brain insulin resistance occurs in systemic insulin resistance syndromes such as T2DM. A 

study that used FDG-PET and hyperinsulinaemic–euglycaemic clamping showed that the 

global and regional changes (whether increases or decreases) in brain glucose metabolic 

activity that were evoked by insulin were greater in insulin-sensitive versus insulin-resistant 

individuals, possibly signifying brain insulin resistance in people with systemic insulin 

resistance171. Other studies have suggested the presence of brain insulin resistance in 

obesity130,172. However, these studies do not clarify whether the brain insulin resistance 

hypothesized in T2DM is truly brain insulin resistance per se or represents inadequate 

delivery of insulin to the brain — for example, owing to BBB transport deficits due to 

insulin resistance.

In patients with T2DM who had cognitive dysfunction and reduced interhemispheric 

connectivity on functional MRI, intranasal administration of insulin normalized connectivity, 
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improved regional cerebral perfusion and improved cognitive performance118,125. This 

finding suggests that improvements can be achieved either by successful delivery of insulin 

in the context of impaired BBB transport and normal brain insulin sensitivity or by 

overcoming brain insulin resistance with larger doses of insulin.

Systemic insulin resistance and ADRDs

A large body of mostly epidemiological evidence suggests that T2DM, obesity and other 

prediabetic states of insulin resistance are risk factors for AD3–19,173 and related 

disorders11,174–193. Insulin resistance has been proposed to contribute to neurodegenerative 

diseases via a number of mechanisms, including promotion of disease-specific pathological 

lesions and an increase in neuronal vulnerability and neurodegeneration in general194. Many 

T2DM animal model studies have supported this concept that T2DM promotes the 

development and accumulation of ADRD pathologies, such as amyloid-β plaques, tau 

phosphorylation and neurofibrillary lesions195, and α-synuclein lesions196.

Neuroimaging studies show that T2DM is associated with patterns of brain changes 

consistent with neurodegenerative dementias, including white matter lesions197. Volumetric 

MRI studies have reported significant correlations between the presence of T2DM, obesity, 

and/or peripheral insulin resistance and decreased hippocampal volume198–208, a common 

although not specific feature of AD. Studies that employ FDG-PET report AD-like regional 

hypometabolism — for example, in parietotemporal, frontal and cingulate–retrosplenial 

regions161,162,209–211. AD-like differences in regional cerebral blood flow and oxygenation 

have also been detected with O15-PET212 and functional MRI213–220.

By contrast, evidence concerning a relationship between T2DM and molecularly or 

pathologically defined neurodegenerative diseases in humans is mostly negative. To our 

knowledge, only one study found that systemic insulin resistance was associated with brain 

amyloid-β positivity by PET imaging221. Others have found no such relationships between 

measures of longitudinal glucose tolerance and amyloid-β PET or post-mortem AD 

pathology results222, no significant differences in PET amyloid-β load between dementia-

free elderly people with or without T2DM163, no differences in amyloid-β PET in a broad 

sample of diabetic versus nondiabetic elderly individuals with normal cognition, MCI or 

AD208, no quantitative difference between individuals with clinical AD dementia with or 

without diabetes mellitus223, and a surprisingly low frequency of amyloid-β-positive PET 

scans in patients with diabetes mellitus who had been clinically diagnosed with AD 

dementia224.

The same group that reported systemic insulin resistance associated with PET amyloid-β 
load also found modest and variable associations between insulin resistance and CSF 

measures of AD pathology, including the phosphorylated tau 181 (phospho-tau181):amyloid-

β42 ratio and some (but not all) amyloid-β species221.

However, others have found increased total tau and phospho-tau levels in patients with 

T2DM but no association between T2DM and amyloid PET findings or CSF levels of 

amyloid-β208. Starks and colleagues found no direct association between systemic insulin 

resistance and CSF amyloid-β, total tau or phospho-tau levels, although they did find a 
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positive association with measures of tau (but not amyloid-β) in individuals positive for 

apolipoprotein E (APOE) ε4225.

The relationship between T2DM and the degree of AD pathology in the brain at autopsy is 

almost uniformly negative185,190,226–231. Studies that considered the APOE genotype in 

patients with T2DM reported that the extent of AD pathology was higher in those with 

T2DM who carried the APOE ε4 allele than those who did not190,232, but the importance of 

the APOE ε4 allele with regards to T2DM itself was not clear. In another study, daily 

average blood glucose level was not found to be associated with the presence of amyloid-β 
plaques, paired helical filament tau tangles, Lewy bodies or vascular lesions but was 

associated with hippocampal sclerosis233. To our knowledge, neuropathological studies 

examining the association between T2DM and other neurodegenerative disease pathologies 

have not been conducted, although post-mortem neuropathology studies have established an 

association between T2DM and post-mortem assessments of cerebrovascular disease. Brains 

from individuals who had T2DM have more arteriolosclerosis with ischaemic rarefaction of 

white matter, large-vessel atherosclerosis, lacunar infarcts, thromboembolic stroke, 

haemorrhagic stroke and aneurysmal subarachnoid infarcts than do those from individuals 

who were free from diabetes185,190,229–231,234–237.

As most of the aforementioned studies were cross-sectional and performed after the onset of 

clinical AD symptoms, they largely fail to account for the time course of disease progression 

in AD. Amyloid-β deposition in the brains of patients with AD begins 10–20 years before 

the manifestation of clinical symptoms238. Consequently, aspects of T2DM such as 

hyperglycaemia, hyperinsulinaemia or insulin resistance might affect the rate of AD 

pathology-associated production, clearance and accumulation during the preclinical 

stage239,240, but these aspects would be missed in studies focused on patients with 

symptomatic AD. With the advent of new neuroimaging technologies for both amyloid-β 
and tau, additional longitudinal studies should focus on individuals who are asymptomatic 

so as to facilitate the investigation of features of T2DM that might alter the course of 

ADRDs.

Shared genetic risk factors also might play a part in any associations between T2DM and 

ADRDs, although the common (that is, sporadic) forms of T2DM and AD both have weak 

hereditary contributions to risk. Two reports described APOE ε4 as an independent risk 

factor for T2DM; however, these studies had small sample sizes and focused on the effects 

of APOE on T2DM or cardiovascular comorbidity241,242. Other studies investigated only 

how APOE genotype modifies the relationship between T2DM and vascular disease and 

found that APOE ε4 increases risk of largevessel and small-vessel disease. T2DM and AD 

have also been associ ated with polymorphisms in genes that confer small risk effects243–247. 

Although some common pathways are found in gene lists for T2DM and AD (for example, 

metabolism, immunity and intracellular trafficking), only one gene, SORCS1, has been 

linked to both diseases248–250. However, the basic molecular and cellular pathogenic 

mechanisms underlying the susceptibility conferred by SORCS1 to AD and T2DM remain 

poorly understood.
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Brain insulin resistance in ADRD, irrespective of T2DM

Advanced age is associated with systemic insulin resistance, but the degree to which this 

resistance occurs in the brain251–254, and the relationship of the brain to body insulin 

resistance in ageing and ADRDs, is not established. Decreased insulin concentrations and 

insulin receptor binding were reported in the cortex of elderly individuals without dementia 

(68–93 years old) compared with young and middle-aged adults (21–62 years old) without 

AD54. Insulin receptor binding was also reduced in elderly individuals with AD (67–91 

years old) compared with the young and middle-aged adults, but insulin receptor binding 

was higher, curiously, in individuals in the elderly AD group compared with that in elderly 

controls. By contrast, subsequent studies of insulin receptor expression and binding in 

humans have principally compared individuals who have AD with age-matched controls and 

suggest decreased expression of insulin receptor mRNA and protein and decreased insulin 

receptor binding in individuals with AD55,255 that correlates with pathological severity255. 

However, others have reported unchanged levels of insulin receptor protein associated with 

AD75,256.

A substantial body of literature describes evidence of insulin signalling pathway 

abnormalities in postmortem brain tissue from individuals who had AD. Hoyer first 

proposed the concept of brain insulin resistance in AD over 25 years ago as one explanation 

for the glucose hypometabolism observed in AD257,258. In 2005, de la Monte and colleagues 

reported reductions in the mRNA and protein expression levels of insulin, insulin receptor, 

IGF1 and IGF2, and reduced total IRS1 mRNA expression, reduced protein indicators of 

downstream insulin signalling activity (including p85-associated IRS1, phosphorylated AKT 

(pAKT) and phosphorylated GSK3β), reduced tau mRNA and increased amyloid precursor 

protein mRNA in post-mortem AD brain55. Furthermore, they found associations between 

these effects and a number of important neuropathological features of AD, including Braak 

stage, astroglial and microglial markers and choline acetyl transferase expression255. 

Together, these findings were interpreted as showing impaired insulin and IGF1 signalling in 

AD, akin to that detected in T2DM. Similar findings were subsequently described in Lewy 

body disease259.

Although some findings of these early studies remain controversial, human post-mortem 

studies of AD have consistently described major abnormalities in the expression and/or 

activation states of insulin signalling molecules75,256,260–269. In an especially comprehensive 

study of human post-mortem hippocampal tissues from nondiabetic elderly adults with and 

without AD, Talbot and colleagues described abnormal activation states of many key 

components and regulators of the insulin receptor–IRS1–AKT–mTOR and GSK3 pathways. 

The study used a novel ex vivo insulin signalling stimulation paradigm that experimentally 

demonstrated insulin resistance in AD75; stimulation with physiological doses of insulin in 

hippocampal tissue from normal postmortem brain tissue robustly activated insulin 

signalling as measured by increased phosphorylation of insulin receptor subunit β, IRS1, 

AKT and GSK3α and GSK3β, whereas tissue from AD brains (matched for age, sex and 

post-mortem interval) had dramatically reduced insulin-stimulated activation throughout the 

pathway. In two independent samples of post-mortem brains from individuals who had AD 

or MCI, substantial abnormalities were described in the basal phosphorylation states of IRS1 
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and its many serine kinases75,266. These abnormalities correlated positively with measures of 

amyloid-β and tau lesions and negatively with global cognition and memory scores. 

Interestingly, the associations remained even after controlling for amyloid-β and tau lesions, 

suggesting that insulin resistance contributed independently from cognitive impairment 

(BOX 2).

Brain insulin resistance might also be a feature of other neurodegenerative diseases. Insulin 

receptor mRNA and protein expression were reported to be decreased in the substantia nigra 

and/or basal ganglia in Parkinson disease, as were expression levels of AKT and 

pAKT270–272. One study that focused on serine phosphorylated IRS1 (pS-IRS1) as a nodal 

marker of insulin signalling pathway inhibition replicated earlier findings demonstrating 

highly abnormal pS-IRS1 expression in AD but also showed increased pS-IRS1 in 

tauopathies (Pick disease, corticobasal degeneration and progressive supranuclear palsy) but 

not in synucleinopathies (Parkinson disease, dementia with Lewy bodies and multiple 

system atrophy) or TAR DNA-binding protein 43 (TDP-43) proteino pathies (frontotemporal 

lobar degeneration with TDP-43, and amyotrophic lateral sclerosis)267.

Prompted by many of these findings, investigators have proposed that increasing the 

concentrations of brain insulin in people with AD might have preventive, disease-modifying 

or symptomatic therapeutic effects. As noted previously, intranasal insulin administration 

enhances memory functions in healthy individuals and in those with insulin 

resistance114–123,273. This finding was also observed in patients with AD or MCI, but only in 

those who did not carry an APOE ε4 allele119,122. A subsequent pilot trial lasting 4 months 

and including more than 100 patients with AD and MCI found that individuals receiving 

daily intranasal insulin had moderately improved cognitive and functional capacities and 

improved FDG-PET metabolism120. Improvements persisted at least 2 months after 

discontinuation of treatment, suggesting the presence of a disease-modifying effect.

Aside from treatment with insulin itself, insulin-sensitizing medicines commonly used in 

T2DM have attracted growing interest as potential therapies for brain insulin resistance in 

ADRD274. For instance, investigators have begun testing of metformin, the most commonly 

prescribed drug for T2DM, in nondiabetic individuals with MCI or early dementia due to 

AD, with some signs of benefit275,276. In addition, thiazolidinedione-based nuclear 

peroxisome proliferator-activated receptor-γ (PPARγ) agonists, which were originally 

developed as insulin sensitizers for T2DM, have shown numerous beneficial neural effects in 

animal models of neurodegenerative diseases277. However, large clinical trials of the PPARγ 
agonist rosiglitazone failed to show primary end point benefit in AD278, and results are 

pending for a definitive clinical trial of another such agonist, pioglita-zone (NCT01931566), 

which has shown promising early results and better BBB penetration than rosiglitazone. 

Glucagon-like peptide 1 (GLP-1) - targeting drugs are another category of insulin sensitizers 

showing promise in AD in preclinical and early clinical trial studies279. However, whether 

these approaches improve ADRDs via their insulin-sensitizing effects on brain cells or via 

their other complex signalling mechanisms of action is uncertain.
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Conclusion and call to action

We have reviewed a large and rapidly growing literature on insulin signalling in the brain 

during normal adulthood and ageing and in individuals with T2DM and ADRDs. Cellular 

insulin resistance, whether in the brain or other tissues of the body, is defined as an impaired 

molecular signalling response to insulin. At the organism level, insulin resistance can be 

defined by the impaired ability of insulin to regulate physiology. Functionally, brain insulin 

resistance can manifest as impaired central regulation of nutrient partitioning, cognitive and 

mood dysfunction, and brain-specific neuropathology and neurodegeneration. A relationship 

seems to exist between systemic insulin resistance in T2DM and/or prediabetes and brain 

insulin resistance, but it remains poorly defined, as does the relationship between systemic 

insulin resistance and ADRDs. T2DM and AD are both associated with brain insulin 

resistance and brain dysfunction; however, T2DM might not be associated with AD in any 

meaningful manner, at least as pathologically defined. At present, we are left with many 

fundamental questions, the answers to which would help to resolve this essential conundrum 

(BOX 3).

Globally, the epidemics of T2DM and AD are growing and have enormous costs — both in 

terms of human suffering and economic burden. Urgent action is needed to accelerate the 

empiric and rational development of preventive, disease-modifying and symptomatic 

treatments based on thoughtfully designed mechanistic studies and improved understanding 

of these diseases. Much is known about the biology of each of these diseases separately, and 

recognition of their pathophysiological intersection is growing. Whether T2DM and AD are 

parallel phenomena arising from similar factors rooted in insulin resistance and metabolic 

dysfunction or are synergistic diseases somehow linked in a vicious pathophysiological 

cycle must be studied. Increasing interdisciplinary knowledge of commonalities and 

differences in insulin resistance in the body and brain will yield dividends for our 

understanding and management of both T2DM and AD.
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Key points

• The molecular signalling pathways through which insulin exerts its actions in 

the body also mediate its roles in synaptic neurotransmission, neuronal and 

glial metabolism, and the neuroinflammatory response in the brain

• The actions of insulin in the brains of healthy individuals include central 

modulation of body metabolism and enhancement or regulation of memory 

and other cognitive and emotional functions

• Insulin resistance is a core feature of type 2 diabetes mellitus (T2DM) and 

contributes not only to the hyperglycaemia that defines diabetes mellitus but 

also to the hyperlipidaemia, inflammation, oxidative stress and atherosclerosis 

that accompany it

• T2DM substantially increases risk of not only cerebrovascular disease and 

stroke but also neurodegenerative dementias of late life, especially Alzheimer 

disease (AD)

• Brain insulin resistance can be defined as the failure of brain cells to respond 

to insulin as they normally would, resulting in impairments in synaptic, 

metabolic and immune response functions

• T2DM is associated with brain insulin resistance, and studies suggest that 

brain insulin resistance is a feature of AD; however, whether the two 

conditions are mechanistically linked or represent unrelated occurrences in 

ageing is unclear
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Box 1

Clinical links between T2DM and ADRDs

Research has uncovered a number of clinical features in individuals with type 2 diabetes 

mellitus that support a relationship (or lack thereof) with Alzheimer disease and related 

disorders. Major findings include

• Modest cognitive deficits, especially in

- Attention

- Information processing

- Executive function

- Memory

• Mood disorders, especially depression

• Large-vessel atherosclerotic and small-vessel ischaemic disease

• Cerebral atrophy

• Hypometabolism in parietal, temporal and frontal cortices

• Impaired insulin-mediated activation of metabolic and 

electroencephalographic activity

• Increased risk of progressive neurodegenerative dementias

• Negative (mostly) molecular neuroimaging and cerebrospinal fluid biomarker 

findings for abnormal levels of amyloid-β and tau

• Negative neuropathological findings of amyloid-β plaques or tau tangles
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Box 2

Brain insulin resistance in ADRDs

• Increasing age is associated with decreasing cortical insulin concentration and 

receptor binding in older adults without dementia

• Brain tissue from those with Alzheimer disease (AD) shows major 

abnormalities in insulin signalling, including

- Decreased insulin, insulin receptor and insulin receptor substrate 1 

(IRS1) mRNA and/or protein expression levels

- Decreased activation of insulin pathway molecules (for example, 

IRS1 and AKT) with ex vivo stimulation

- Increased basal phosphorylation levels of multiple insulin–IRS1–

AKT pathway molecules

- Positive correlation between phosphorylated IRS1 and other 

pathway molecules and AD pathology

• Intranasal insulin administration improves cognitive functioning in humans 

with AD or mild cognitive impairment and improves measures of insulin 

signalling, amyloid-β and cognitive behaviours in AD model mice

• Brain insulin resistance might be a feature of other neurodegenerative 

diseases

- Insulin receptor expression is decreased and AKT signalling is 

abnormal in the substantia nigra in Parkinson disease

- Abnormal phosphorylated IRS1 expression is observed in 

tauopathies but is not seen in synucleinopathies or TDP-43 

proteinopathies

Arnold et al. Page 30

Nat Rev Neurol. Author manuscript; available in PMC 2018 August 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Box 3

Questions regarding the mechanistic relationship between T2DM and 
ADRDs

• Is insulin produced in the brain or not? If so, where, how much and by what 

means?

• Does type 2 diabetes mellitus (T2DM) affect the blood–brain barrier? Are 

insulin concentrations increased or decreased in the brain and cerebrospinal 

fluid in T2DM and in Alzheimer disease (AD) and related disorders 

(ADRDs)?

• How does insulin and insulin resistance affect glial cell function?

• What are the mechanisms in T2DM that lead to brain insulin resistance and 

cognitive impairment? Do hyperglycaemia, hyperinsulinaemia, 

hypoinsulinaemia, dyslipidaemia, hypertension, renal failure, microvascular 

disease, adipokine or incretin effects, oxidative stress, advanced glycation end 

products, inflammation or other associated causes and consequences of 

T2DM play a part?

• How does T2DM increase the risk of AD and possibly other 

neurodegenerative dementias? Does it promote the molecular neuropathology 

of these diseases? Does it weaken the neural systems or neuroplastic 

resilience factors so that injurious effects of plaques, tangles or other 

pathologies are magnified, with greater clinical expression per unit of 

pathology? How do we improve the design of studies aimed at a preclinical 

population to capture the interaction between T2DM and ADRD pathologies?

• How important is the brain insulin resistance observed in AD to the 

neurodegenerative process? Is it a consequence, a cause or part of a vicious 

cycle with amyloid-β and tau pathologies?

• Does AD impair brain insulin action with regards to systemic metabolic 

control, and would this effect in turn increase susceptibility to T2DM?

• Which metabolic pathways regulated by brain insulin (for example, lipolysis 

in adipose tissue, hepatic glucose production or branched-chain amino acid 

metabolism) are disrupted in AD?

• Might the insidious and protracted accumulation of neurodegeneration in the 

brain (including the hypothalamus) in AD alter the central regulation of body 

energy metabolism and even promote systemic insulin resistance and T2DM?
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Figure 1. Canonical insulin signalling pathways
Insulin binds extracellular α-subunits of the insulin receptor (IR), leading to dimerization 

and autophosphorylation of β-subunits and activation of its kinase activity. The IR 

phosphorylates select tyrosine residues (pY) on insulin receptor substrate 1 (IRS1) and 

IRS2, leading to exposure of binding sites for signalling partners. IRS1 and IRS2 recruit and 

activate the phosphoinositide 3-kinase (PI3K) complex, which then phosphorylates and 

activates AKT, the major node of the insulin signalling cascade, as well as protein kinase Cζ 
(PKCζ) and PKCλ. Activated AKT has many downstream effects: of greatest relevance to 

systemic glucose control, AKT phosphorylates AKT substrate of 160 kDa (AS160; also 

known as TBC1D4), which controls the translocation of glucose transporter type 4 (GLUT4) 

to the cell membrane for uptake of glucose into muscle, adipose and some neurons. AKT-

mediated activation of mTOR and the downstream targets of mTOR serves to regulate 

protein and lipid synthesis and many aspects of cell metabolism, growth, survival and 

autophagy. Phosphorylation of glycogen synthase kinase 3β (GSK3β) by AKT inhibits the 

constitutive activity of this key kinase. GSK3β has many protein substrates, such as 

glycogen synthase, β-catenin, microtubule-associated proteins (including tau), intermediate 

filaments, cAMP-responsive element-binding protein (CREB) and others. Through these 

diverse proteins, insulin and GSK3β signalling play important parts in the regulation of 

cellular proliferation, migration, glucose regulation, apoptosis and neuroplasticity. AKT 

kinase activity also directly activates proteins such as inhibitor of nuclear factor-κB kinase 

(IKK), CREB and E3 ubiquitin-protein ligase Mdm2 (MDM2) to regulate transcription, 

cytokine production and cell survival, and it directly inhibits selected proteins, including 

regulators of apoptosis (Bcl2-associated agonist of cell death (BAD) and caspase 9 

(CASP9)) and Forkhead box protein (FOX) transcription factors. Independent of IRS1 and 

IRS2 and AKT, IR kinase activity initiates the activation of the mitogen-activated protein 

kinase (MAPK) pathway, which is especially important for regulating the transcription of 

CREB, Myc proto-oncogene protein (MYC) and ribosomal protein S6 kinase 2 (RSK2; also 

known as S6Kα3), affecting cell proliferation, differentiation, innate and adaptive immune 
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function and neuroplasticity. Importantly, AKT, GSK3β, mTOR and MAPK themselves 

provide feedback autoregulation of IRS1 and IRS2, inhibiting their activity through site-

specific serine phosphorylation. 4EBP, eukaryotic translation initiation factor 4E binding 

protein; APP, amyloid precursor protein; EIF4G, eukaryotic translation initiation factor 4γ; 

FOS, proto-oncogene c-Fos; GRB2, growth factor receptor-bound protein 2; JUN, 

transcription factor AP-1; MEK, MAPK/ERK kinase (also known as MAPKK); MNK, MAP 

kinase signal-interacting kinase (also known as MKNK); NFAT, nuclear factor of activated T 

cells; p70S6Kβ, p70 ribosomal S6 kinase β (also known as S6Kβ2); p90S6K, 90 kDa 

ribosomal protein S6 kinase 1 (also known as S6Kα1); PDK1, 3-phophoinositide-dependent 

protein kinase 1; PGC1, PPARγ coactivator 1; PIP2, phosphatidylinositol 4,5-bisphosphate; 

PIP3, phosphatidylinositol (3,4,5)-trisphosphate; PPAR, peroxisome proliferator-activated 

receptor; RICTOR, rapamycin-insensitive companion of mTOR; SHC, SHC-transforming 

protein; SKAR, S6K1 Aly/REF-like target (also known as POLDIP3); SOS, son of sevenless 

homologue; SREBP, sterol regulatory element-binding protein; TSC1, hamartin; TSC2, 

tuberin.
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Figure 2. Insulin effects in major cell types of the brain
Main characteristics of insulin signalling in neurons, astrocytes, microglia and the vascular 

system. AMPA, α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid; BBB, blood–

brain barrier; GLUT, glucose transporter type protein; IR, insulin receptor; IRS, insulin 

receptor substrate; LTD, long-term depression; LTP, long-term potentiation; NMDA, N-

methyl-d-aspartate; NO, nitric oxide.
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